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A B S T R A C T   

In predicting how soil C fluxes and stocks will change with the environment, models are a critical tool for 
integrating datasets with theory. Models developed in the 1980’s were based on 1st order kinetics of C-pools 
defined by turnover time. However, new models generally include microbes as decomposers although they vary 
in the number and nature of microbial pools. They don’t, however, integrate modern omics-based datasets 
because models have coarse resolution and need to function even in the absence of community data—geo-
graphically or into the future. There are several issues new models must address to be valuable for large-scale 
synthesis. First, how to incorporate microbes and their activities—how many pools of organisms? How should 
they be defined? How should they drive C-cycling? Should their synthesis of degradative enzymes be treated 
implicitly or explicitly? Second, carbon use efficiency (CUE)—the partitioning of processed C between respira-
tion and re-synthesis into biomass. This term is critical because the size of the biomass influences its rate of 
organic matter processing. A focus has been on CUE’s temperature sensitivity—most studies suggest it declines as 
temperature rises, which would limit decomposition and organic matter loss. The final novel modeling element I 
discuss is “priming”—the effect of fresh inputs on decomposition of native organic matter (OM). Priming can 
either repress or accelerate the breakdown of native OM. But whether, and how, to capture priming effects in soil 
organic matter models remains an area of exploration.   

Soil microbial ecology has struggled for many years to integrate with 
ecosystem scale biogeochemistry. To understand how microbial systems 
regulate whole ecosystem processes, we must bridge the scales between 
what organisms do and what ecosystems do. A critical tool in this ven-
ture is models. While “modeling” usually implies a mathematical 
framework, a model is first and foremost a conceptual framework about 
how components of a system relate to each other. After the concept is 
developed, one may write equations that capture the behavior, 
providing output that can be tested and calibrated against data. When 
the theory, equations, and data all mesh together, they form a stable 
intellectual “triangle” that can become a paradigm (Blankinship et al., 
2018, Fig. 1). Modeling microbial systems in soil has developed sub-
stantially over the decades, yet there remains a large gap between what 
we can measure as microbial ecologists, and what we can model as 
biogeochemists. We still struggle to develop models of soil biogeo-
chemistry that adequately capture microbial dynamics while explaining 
the behavior of ecosystems and which can be widely validated against 
field data. 

Within microbial ecology, models have evolved from simple 

descriptions of microbial growth (Monod 1949; Chapman and Gray, 
1986) to more elaborated models of community dynamics and resource 
use (Chakrawal et al., 2021). In contrast, ecosystem models have 
emphasized the pools of resources, focusing on simple equations (Parton 
et al., 1987), and only adding biological detail where it substantially 
enhances the prediction of pools or fluxes (e.g. Wieder et al., 2013; 
Sulman et al., 2014). Ecosystem models can be seen as simplistic or even 
unrealistic in how they treat microbial systems. Blankinship et al. (2018) 
argue that we still rely on such models because they continue to work at 
the ecosystem to regional scales, and monthly to annual time scales, for 
which they were designed, whereas modern microbial models struggle 
to develop a “stable triangle” that weaves together the model with its 
underlying theory and with a measurement suite that would be neces-
sary to parameterize and run it (Fig. 1). In this paper I will focus on ways 
in which the theory has been developing and has been integrated into 
model formulations. A full discussion of data assimilation approaches is 
beyond the scope of this review. We still struggle to establish the most 
appropriate conceptual framing to capture complex dynamics (e.g. Shi 
et al., 2018). What processes need to be incorporated into a new 
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generation of models to more reliably and robustly capture future car-
bon and ecosystem dynamics? How do we at least merge the theory with 
the models? 

1. CENTURY and Roth-C: the foundational soil C models 

The seminal biogeochemical models, which remain central in how 
global systems are modeled, remain CENTURY (Parton et al., 1987) and 
Roth-C (Jenkinson, 1990). These were developed at a similar time and 
reflected the state of theory in both biogeochemistry and soil science, as 
well as the state of computational power in the 1980’s when they were 
developed. They are similar in their conceptualization, and both have 
evolved over the years (e.g. Parton et al., 1998; Farina et al., 2013). 
CENTURY assumes that soil organic matter is composed of three pools 
whose dynamics are captured in first-order turnover equations driven by 
the size of the source pools (Fig. 2). There is an active pool that turns 
over rapidly, a pool that turns over slowly, and a passive pool that has a 
very long turnover time; RothC considers this last pool to be “inert” 
(Jenkinson, 1990). 

In CENTURY, the active pool is conceptualized as being primarily 
“live microbes and microbial products along with soil organic matter 
with a short turnover time” (Parton et al., 1987). The passive pool was 
originally thought to include chemically recalcitrant material, but is 
now thought to be primarily mineral associated organic material 
(MAOM) that is protected by absorption on, or entrapment within, the 
mineral phase. The intermediate, slow, pool is the least defined: 
“physically protected and/or in chemical forms with more biological 
resistance to decomposition” (Parton et al., 1987). However, these as-
signments are not fundamental to the formulation of these models—the 
active and slow fractions were estimated by fitting respiration curves 
from laboratory incubations while the passive pool was estimated from 
14C dating methods (Parton et al., 1987). Thus these models are based on 
more of a phenomenological, or empirical, approach, recognizing that 
organic matter has a range of turnover times and may be apportioned 
into pools that reflect the range of behaviors. In these models, pool sizes 
and their turnover times are a function of climatic conditions and soil 
texture. Notably, the reaction kinetics are first-order—there is no active 

microbial role in regulating turnover although in Parton et al. (1987) 
they state that “all C decomposition flows are a result of microbial ac-
tivity.” Microbial activity, however, is implicit, embedded within the 
rate constants, rather than an explicit function of microbial biomass. 
This reflects an inherent assumption that the size of the active biomass 
will remain in equilibrium with resource availability and hence does not 
need to be explicitly represented as a driver of pool turnover. Models 
that work like CENTURY and Roth-C remain core tools in global scale 
modeling (Todd-Brown et al., 2011; Wieder et al., 2014). Not only are 
they simple and straightforward, but they capture essential truths, and 
have done a remarkable job of capturing of SOM dynamics across the 
globe. These models set a standard that any global model must match. 

However, there has been increasing pressure and movement to 
develop a new generation of more mechanistically realistic models, 
models that will better describe existing datasets about fluxes, pool sizes, 
and organic matter chemistry. The majority of models that have been 
developed during the last decade have incorporated more complex mi-
crobial dynamics and behavior. 

Yet, new models still struggle with “triangle” issues—particularly on 
the data side. We can develop theory that matches new models; in fact, it 
is by framing a model that we lay out what the theory actually is. But 
data sets remain complex; there may well be multiple mechanisms 
operating at a fine scale, yet we are challenged to identify these to 
explain behaviors that we observe at scales from the soil core to the 
whole globe. Multiple suites of processes might be invoked to explain a 
particular pattern. Relatively few models have been validated against 
independent data sets involving multiple elements (e.g. CO2 fluxes and 
pool sizes of SOM components; Abramoff et al., 2022). This raises con-
cerns over “equifinality” in the model systems—that is that multiple 
model structures might produce patterns that fit the data equally well 
(Marschmann et al., 2019). This is a serious concern as datasets are often 
messy; it can be difficult to determine the best performing model for-
mulations (Wieder et al., 2014). 

A particular challenge in validating new generations of models is that 
in the short-term, the fate of fresh plant inputs is largely the same—they 
will be decomposed and most of the C will be released as CO2. Hence in 
fitting a time series of CO2 emissions, it doesn’t require sophisticated 

Fig. 1. A representation of existing and emerging approaches to evaluating soil organic matter (SOM) dynamics. The existing approach is robust because all three 
nodes—theory, measurement, and modeling—form strong bidirectional linkages and are well balanced (a). Recent and ongoing innovation at each node expands the 
SOM paradigm triangle as understanding of the controls on SOM dynamics grows. However, if expansion at a node outpaces integration of linkages within the 
triangle, then cracks form causing a lack of applicability and adaptability to changing environmental conditions (b). Reprinted with permission from Blankinship 
et al. (2018). 
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model structures to get the overall patterning correct. Rather, where 
differences are likely to appear and to become important are in the 
longer-term trajectories of SOM and microbial dynamics. Small short- 
term differences can amass to large long-term differences when they 
are able to accumulate over decades. Models that are more explicit about 
the fate of carbon and that identify specific chemical forms that mate-
rials move into should be ultimately easier to test and validate because 
they would have more points to compare and so would be less likely to 
suffer from equifinality. 

2. Issues to consider in new generations of models 

2.1. Microbial agents 

It has become clear that new generations of SOM models must do 
better than linear 1st order models such as CENTURY—newer models 
are more responsive and more dynamic than a pool-driven 1st order 
model is capable of (e.g. Wieder et al., 2013). A primary assumption in a 
CENTURY-type model is that microbial activity is resource limited and 
so resource supply regulates the rate of overall processing. Newer 
models recognize that pure substrate control is limited in its ability to 
explain the dynamics of SOM processing; the actual decomposers should 
be a component of the model structure to capture the dynamics, but how 
best to include the activity of the decomposer community remains less 
clear (Wieder et al., 2013). For example, Millenial Version 2 (Abramoff 
et al., 2022) assumes a single microbial biomass pool that is involved in 
depolymerizing particulate organic matter (POM) to release low mo-
lecular weight carbon (LMWC) that microbes then take up and metab-
olize. In contrast, the MIMICS model has two groups of microorganisms, 
one active on metabolic components of plant litter, while the other acts 
on structural litter; both can also metabolize soil organic C (Wieder 
et al., 2014). Sulman et al.‘s CORPSE model (2014) also has two biomass 

pools, but they are considered to be spatially separated, one acting in the 
rhizosphere and the other in the bulk soil. The complex BAMS1 model 
assumes that fungi depolymerize plant polymers to monomers that are 
then taken up by aerobic bacteria, which reprocess some of those 
compounds into cell materials and respire the rest (Riley et al., 2014). To 
model tundra organic soils, SCAMPS has only a single microbial biomass 
pool, but this can shift in its stoichiometry and resource allocation to-
wards producing different classes of extracellular enzymes, each of 
which targets a particular class of substrates: phenolics, cellulose, or 
N-rich materials (Sistla et al., 2014); functionally the biomass can 
become more “bacterial” (lower C/N, less exoenzyme production) or 
more “fungal” (higher C/N, and more exoenzyme production). MEND is 
somewhat analogous but is designed to work in mineral soils (Wang 
et al., 2015); it has separate categories of decomposing enzymes but it 
has both active and dormant microbes; adding dormancy matched mi-
crobial biomass levels in a long-term lab incubation better than other 
model structures. Moorhead and Sinsabaugh (2006), in contrast, divide 
the soil community into three guilds: opportunists, decomposers, and 
miners that compete with each other for available resources. But they 
define this as a “theoretical model” that they compared to litter 
decomposition rather than to whole-soil SOM dynamics. They also 
acknowledge “A number of patterns of behavior in our microbial based 
model will be very difficult to directly verify.” 

Other, more elaborate, model structures have offered similar qual-
ifications—for example Tang and Riley (2017) involves an elaborate 
model of redox reactions—to solve enzyme catalyzed multi-reactant 
processes, they use double Monod kinetics (both substrate and enzyme 
can show saturation). They analyze this with sophisticated SUPECA ki-
netics, which marries synthesizing unit (SU) kinetics with an equilib-
rium chemistry assumption (ECA) approach to solving the equations. 
But they state that “we are not suggesting that SUPECA kinetics should 
replace existing soil biogeochemical (BGC) models, but rather that 

Fig. 2. A comparison of a representative 1st order kinetic model (CENTURY; Parton et al., 1987) and a recent microbial model (Millennial V2; Abramoff et al., 2022). 
CENTURY defines soil C pools based on their turnover times, and pool exchanges are based on 1st order kinetics, with transfers a function of soil texture. Microbial 
activity is embedded implicitly within pool transfers. In contrast Millennial V2 defines chemically/physically measurable pools. Depolymerization of particulate OM 
to low molecular weight C (LMWC) is catalyzed by the microbial biomass and is dependent on the size of the biomass. All respiration is carried out explicitly by the 
microbial biomass after LMWC has been taken up. In CENTURY, carbon use efficiency (CUE) is built into the transfer functions while in Millennial it is a function of 
microbial C use and respiration. CENTURY has no priming, whereas it is implicit in Millennial V2—if exudates increase biomass, that will accelerate breakdown 
of POM. 
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mechanistic analysis using a SUPECA-based model can inform process 
understanding and thereby improve such models.” Such complex models 
are appropriate in limited circumstances and to develop new insights 
that can be simplified into more generally applicable equation structures 
and parameterizations. 

Notably, none of these models assign taxonomic identity to the 
biomass pools, although Moorhead and Sinsabaugh (2006) come closest. 
Partly that is because if there is only one microbial group there is no 
need for identity. With CORPSE, if the assumption is that the microbial 
groups are separated spatially, bulk soil community analyses would be 
inappropriate. But it is equally worth noting that it remains challenging 
to link from DNA-based taxonomy to the broad functional classes 
required in a large-scale model (Guo et al., 2020). 

It is important to note that simply adding a decomposer to a model 
doesn’t necessarily make it “better.” For example, Fujita et al. (2014) 
found that a linear model did a better job of capturing respiration pat-
terns across a range of soils that varied in SOM levels. A multiplicative 
model (in which decomposition is a function of both the size of the SOM 
pool and of the biomass) produced too little respiration at low SOM 
levels, but too much at high levels. Making the function a 
Michaelis-Menten saturation curve solved the overestimation at high 
levels but not the underestimation at low SOM. Calibrating their models 
to capture the average conditions meant that when SOM levels and the 
associated biomass were low, the respiration rate was necessarily low. 
They concluded that “including the non-linear kinetics of microbial 
substrate consumption does not seem necessary to improve the model 
performance, unless capturing temporal fluctuation of fluxes is of main 
concern.” Of course, capturing such temporal fluctuation of fluxes is a 
concern for many biogeochemical models! 

In adding levels of microbial sophistication to a model, however, it is 
equally important to capture other mechanisms that constrain soil 
processes—the physical and chemical processes that regulate SOM dy-
namics. Which pools and which mechanisms are the right ones to 
include is always the question. As Manzoni et al. (2016) notes “most 
ecosystem-scale biogeochemical models lack this level of detail in their 
pool structure and thus require kinetic laws that account for detailed 
processes and yet only depend on a few modeled pools.” For such rea-
sons, Riley et al. (2014) argued that “the next generation of land BGC 
models to be used for climate prediction should include, explicitly or 
implicitly, representation of vertical carbon transport, microbial activ-
ity, mineral surface interactions, temperature and moisture controls on 
independent processes, and nutrient dynamics.” However, it is worth 
noting that the models that target litter decomposition (e.g. Moorhead 
and Sinsabaugh, 2006) or organic soils (Sistla et al., 2014), where the 
substrate chemistry is better defined and protection mechanisms less 
dominant, are generally more microbially explicit. 

It is possible to build a model that matches patterns in the data but 
that relies on the wrong mechanism. For example, to model the micro-
bial responses to repeated dry-wet cycles, Lawrence et al. (2009), found 
that of four models of increasing complexity, the most elaborate best fit 
the data; in this model, exoenzymes acted even while soils were dry, 
causing bioavailable material to accumulate for microbial use during the 
next rewetting event. This mechanism enabled the model to be sensitive 
to the length of time the soil remained dry, with larger pulses following 
longer dry periods. However, when Homyak et al. (2018) tested this 
hypothesis by incubating dry plant roots under chloroform (to allow 
enzyme activity but prevent microbial uptake of the products) enzymes 
remained viable but there was no accumulation of the reducing sugars 
that should be there, were enzymes active. They concluded that physical 
mechanisms were likely responsible for mobilizing mineral associated 
OM into a water extractable phase as soils dried. Hence it appears that 
the Lawrence model was getting the “right” answer, but possibly for the 
wrong reasons. 

When we are considering mineral associated organic matter 
(MAOM), which can comprise much of the slow and passive pools, the 
rate-limiting step in overall SOM turnover will almost certainly be the 

mobilization step—the reaction that releases OM from protection. This 
step is likely regulated by abiotic chemistry, and so can perhaps be 
reasonably modeled with 1st order kinetic equations based on substrate- 
concentration—the rate is equal to the size of the pool times a rate 
constant that reflects the nature of the chemistry (dC/dt = -kC; where k 
is a rate constant and C is the size of the carbon pool). This is what 
Abramoff et al. (2022) do in Millennial V2, where processing MAOM is 
driven by desorption. 

2.2. POM vs. MAOM 

A key area where the role of different mechanisms may be important 
is in processing plant detritus vs. mineral associated organic matter 
(Fig. 2). Detritus constitutes the main input of OM into soil, and the 
microbial role in fragmenting, hydrolyzing, and metabolizing particu-
late organic matter (POM) is undeniable. Since this flux represents the 
largest flow of C into the soil system, models that emphasize respiration 
will necessarily emphasize the decomposition pathways. However, 
when we consider C-sequestration and fates of C other than being 
respired to CO2, we need to emphasize the processes that regulate the 
dynamics of MAOM, which often comprises the larger pool of C in the 
soil (Abramoff et al., 2017). In this case, models must likely emphasize 
the physical and chemical processes that influence inputs and outputs to 
MAOM: production of microbial necromass, sorption/desorption, etc. 
These are smaller flows than respiration but are the processes that 
control the long-term dynamics of SOM and of ecosystem C storage. 
Microbial models are commonly fit to time series of CO2 efflux because 
efflux is important, but also because it is easy to measure (Lawrence 
et al., 2009; Brangarí et al., 2020). Estimating necromass production, 
stabilization of microbial products etc. is technically much more diffi-
cult, not only in defining what to measure (and how to measure it), but 
in detecting changes over time. Yet, as models emphasize how ecosys-
tems, and carbon stocks, will respond to climate change and land 
management, capturing the dynamics of the stabilized pools has become 
more important; it is no longer good enough to get the bulk CO2 fluxes 
close enough to “right” and allow the flows into slow or stable pools as 
just a small “error” term. 

Which are the most important fluxes to capture in a model are sen-
sitive to time scale—in the short-term (annual or shorter) capturing CO2 
flux dynamics is critical. How does microbial activity respond to sea-
sonal cycles with weather events, drying/rewetting cycles, and changes 
in plant inputs? However, when the time scale shifts from days or weeks 
to years or decades, it is safe to assume that fresh plant litter will be 
processed, so a model that is a little off about when litter is metabolized 
probably won’t matter much. Rather, a model’s long-term accuracy will 
be determined by whether it ultimately gets the fate of litter C cor-
rect—can the model accurately predict changes in soil C stocks? 
Increasing the amount of litter C that ultimately becomes MAOM from 
1% to 2% would be undetectable within the perspective of annual C- 
flows, but would still be a doubling of an important flux for long-term 
soil C dynamics; over decades, such a difference could lead to large 
differences in sequestered C pools. Thus, models need to pay more 
attention to the mechanisms that regulate the long-term stabilization of 
soil C (Georgiou et al., 2021). 

2.3. Enzyme based models 

The 1st order assumption increasingly is seen as inadequate, 
particularly for plant litter decomposition (Wider et al. 2013; Abramoff 
et al., 2022). For the labile fraction of plant material, the size of the 
active population of microbial biomass is likely a driver on the overall 
decomposition rate, producing kinetics that are 2nd order, sensitive to 
the size of both the carbon pool and the microbial biomass (dC/dt =
-kCB; where B is the size of the biomass). Particulate detritus is regulated 
a little differently, as it is composed of polymers that require extracel-
lular enzymes to fragment polymers into monomers or oligomers that 

J. Schimel                                                                                                                                                                                                                                         



Soil Biology and Biochemistry 178 (2023) 108948

5

can be taken up and then metabolized. That gives a rate equation, which 
at its simplest, would be dC/dt = -kCE; where E is the pool size of the 
relevant extracellular enzymes. In each of these models, however, this 
pure second order formulation leads to a situation where, if decompo-
sition fuels sufficient growth, the B or E terms grow, accelerating 
decomposition and microbial growth further, fueling a runaway explo-
sion until all substrate is consumed. Thus, a simple second-order model 
inherently becomes unstable. Something must constrain the maximum 
rate or the system blows up and crashes. One way to stabilize these 
equations is to make the B or E term a saturation function in which, as 
enzyme levels increase, activity per unit enzyme decreases, reaching 
some maximum possible reaction velocity:  

dC/dt = -Vmax E / (E + Km)                                                                    

where Vmax is the maximum possible rate and Km is the “half-saturation 
constant”—the substrate concentration at which the rate is ½ of Vmax. 
This is “reverse Michaelis-Menten kinetics” where enzymes compete for 
substrate binding (Schimel and Weintraub, 2003), rather than the classic 
Michaelis-Menten equation where mobile substrates compete to bind at 
an enzyme active site. 

There are several families of issues related to soil enzymes that in-
fluence how we incorporate them into ecosystem models. First is the 
diversity of enzymes and how we should measure their activities to 
predict decomposition. Second is how to measure their occurrence and 
activity; modern enzyme assays measure the amount of enzyme present 
rather than its true activity. Third, are the specific kinetic parameters 
that one associates with the enzyme activities. 

The first challenge in using exoenzymes to drive decomposition 
models is that microorganisms produce a wide array of enzymes that are 
involved in breaking down organic material. Models can’t capture all of 
them individually and so they generally abstract them into functional 
groups of enzymes. Schimel and Weintraub (2003), one of the earliest 
models to explicitly consider enzyme behavior, aggregated exoenzymes 
into a single pool. Allison et al. (2010) in a model designed to explore 
global patterns did likewise, having one enzyme pool that scaled with 
microbial biomass. However, Allison (2012) took a different approach to 
modeling litter decomposition in the trait-based DEMENT model which 
explored litter decomposition through an individual-based model that 
allowed a wider array of theoretical organisms with different enzyme 
arrays to interact in a spatial grid to predict decomposition dynamics. In 
this model different organisms can produce an array of degradative 
enzymes. Kaiser et al. (2015) built an analogous (spatial/individual) 
model that distinguished between exoenzyme producers and 
non-producers (“cheaters”) to explore litter decomposition. Both models 
could reasonably predict litter decomposition but involve substantial 
computational overhead that would be inappropriate for a coarser-scale, 
3-dimensional, whole-soil model. 

Numerous studies now measure a suite of enzyme activities to cap-
ture resource limitations to the microbial community—typically 
“model” enzymes that target C-, N-, and P-acquisition; commonly 
β-glucosidase, N-acetyl glucosaminidase, leucine aminopeptidase, and 
acid phosphatase (German et al., 2011). These can be used to model 
microbial activity and even to develop patterns of resource limitation 
and of carbon use efficiency (e.g. Sinsabaugh et al., 2016, but see 
Schimel et al., 2022). But, to choose a single model C-acquiring enzyme 
to represent the entire guild of enzymes lumps multiple groups of soil 
microorganisms and their degradative systems. Perhaps most impor-
tantly, it assumes that the hydrolytic and oxidative enzyme systems 
work and respond in parallel. This, however, is not true, at least when it 
comes to detritus decomposers—white rot fungi synthesize extensive 
oxidative enzymes, while other fungi rely more extensively on hydro-
lytic enzyme systems and as a result leave behind complex 
polyphenol-rich material that is resistant to further decay (Fukasawa, 
2021). Whether the same patterns of alternative, rather than parallel, 
enzyme decay pathways occurs in SOM processing remains unclear. 

Regardless, we are left with a challenge in matching modeled and 
measurable pools of active enzymes. We must use some suite of bio-
indicator enzymes to reflect the processes they are responsible for, but 
which do we choose? The decision is a function of the theory we use in 
developing any specific model. 

A new approach to exploring the role of depolymerizing enzymes is 
the C-STABILITY model (Sainte-Marie et al., 2021), which treats depo-
lymerization as a continuous process in which polymers are fragmented 
over time into components that become small enough to be assimilated. 
They are able to explore the relative roles of enzymes which cleave small 
pieces from the end of a polymer (exo-cleaving) vs. those that chop up a 
polymer randomly (endo-cleaving). They also combine compartmental 
and continuous approaches to characterizing SOM. 

Having decided which enzymes to capture, we are still left with the 
limitations of our enzyme measurement approaches. Modern enzyme 
assays are potential measurements, in which substrate supply is maxi-
mized by adding an artificial substrate that is cleaved to release products 
that can be readily analyzed (German et al., 2011). For C-degrading 
enzymes, a common assay uses a MUB-crosslinked substrate, which 
upon hydrolysis, fluoresces and is straightforward to measure (German 
et al., 2011). However, these are assays of the size of the pool of the 
target enzymes, rather than an estimate of the rate at which a native 
enzyme is capable of reacting a particular substate at its ambient con-
centration. We generally assume that the potential activity is related to 
the actual activity; an assay that estimates the enzyme pool should 
provide an index of the actual in situ activity, but this is more of an 
assumption than a conclusion (Homyak et al., 2018). 

Were enzymes short-lived in the environment, the assumption that 
the pool size is related to activity would probably be reasonable. In fact, 
models that drive litter decay based on the size of the active microbial 
community (e.g. Moorhead and Sinsabaugh, 2006; Sulman et al., 2014) 
must assume that the size of the enzyme pool is directly correlated with 
the size of the producing community (Fatichi et al., 2019). There is 
sometimes an implicit assumption that the size of the active enzyme pool 
is related to the size of the gene pool that codes for the enzymes, 
allowing correlation between the size of microbial populations and the 
rate of enzymatic activity (e.g. Treseder et al., 2018; Diamond et al., 
2019). 

However, important exoenzymes are relatively stable in the soil 
environment. Schimel et al. (2017) found that when soils were incu-
bated under chloroform (to prevent microbial production and con-
sumption of exoenzymes and their products), most hydrolytic enzymes 
in mineral soils lost activity exponentially, but slowly; retaining >½ of 
their activity even after 3 months. The exception was alpha-glucosidase 
which lost activity more quickly. The one soil in which activities were 
lost rapidly was an organic tundra soil, in which enzymes lost half their 
activity within 2–4 weeks. In a live soil, decay and loss might be more 
rapid, but enzymes are readily stabilized by mineral association (Schi-
mel et al., 2017). Over annual or longer time scales it seems likely that 
enzyme pools would reflect the average status of the populations that 
produce the enzymes, but it should not be safe to assume that the 
standing enzyme pools will reflect changes in the status of the 
enzyme-producing community over shorter time periods, such as are 
commonly used in incubation experiments. There should be a lag be-
tween changes in the producing community and measured enzyme ac-
tivities, and there should be a substantial background level of enzyme 
activities. Even in the face of catastrophic disturbance to the soil com-
munity, the background pool of enzymes should maintain a level of 
activity that would buffer the functioning of the community. 

Finally, there is the challenge of estimating the parameter values for 
the actual enzyme-meditated reaction rate equation. The Michaelis- 
Menten equation assumes that mobile substrates compete for binding 
at the enzyme active site; the “reverse Michaelis-Menten equation” as-
sumes mobile enzymes must compete for binding at a reaction site on an 
insoluble polymer molecule (Schimel and Weintraub, 2003; Tang, 
2015). Both have analogous mathematical structures that require two 
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parameters—a Vmax term and a half-saturation (Km) term. We have no 
good ways of directly estimating what these specific terms should be—in 
part because the model enzymes are theoretical or mathematical con-
structs to which we fit models, and in doing so, estimate parameter 
values to generate a “best fit” model that includes the needed parameters 
(Schimel and Weintraub, 2003). Hence the values we estimate through a 
model might bear little actual resemblance to the true kinetic fits for 
actual enzyme molecules (e.g. Allison, 2012). 

These challenges in modeling exoenzyme behavior directly are a 
major reason that most models have assumed that enzyme pools will be 
in equilibrium with the size of the biomass that produces them. Thus, 
instead of including enzymes in a model, they instead just model the 
populations of the organisms. This approach, either implicitly or 
explicitly, is common. For example, the MIMICS model (Wieder et al., 
2014) has two groups of microorganisms, one active on metabolic and 
the other on structural litter. Millenial V2 operates similarly, with mi-
crobes active in decomposing POM, but relying on desorption reactions 
to mobilize MAOM into an accessible pool (Abramoff et al., 2022). 
Exoenzymes are not a component in these models, yet the organisms 
metabolizing structural/particulate litter rely on exoenzymes to frag-
ment litter molecules; exoenzymes are thus implicit within the model 
structure. 

Such challenges are inherent in developing models within the 
Blankinship et al. (2018) “triangle” structure—having used theory to 
develop the structure of the model equations, we rely on empiricism to 
determine the best values for they key terms in the equations. Experi-
ments must be designed that will provide the data needed to fit to the 
theories and models; this should include identifying key pools and 
processes that are measurable and that would distinguish between 
different model formulations. Undoubtedly this will involve isotope 
tracer studies and more sophisticated chemical analyses of SOM 
chemistry. 

2.4. Microbial community driven models 

“However, one grand challenge in climate change biology is to 
integrate microbial community information, particularly omics infor-
mation, into ecosystem models to improve their predictive ability for 
projecting future climate and environmental changes.” (Guo et al., 
2020). 

How much detail about microbial community composition it will be 
desirable to include in ecosystem-scale soil organic matter models re-
mains unclear, and this represents a major gap between ecosystem- and 
microbial-scale studies. It is notable how microbial ecology has 
increasingly emphasized ‘omics-based perspectives to evaluate the 
composition of microbial communities, and there has been growing 
focus on using these tools both to evaluate microbial function and to 
associate community composition with function. Tools such as network 
analysis are increasingly applied to evaluate the functional structure of 
communities and to collapse complex communities into a more 
manageable collection of clusters and to identify particular keystone 
organisms (Goberna and Verdú 2022; Guseva et al., 2022). 

As some models have become more physiologically detailed, the 
potential to use omics-based data to parameterize them has grown. For 
example, the MEND model (Wang et al., 2015) includes specific enzyme 
systems; Guo et al. (2020) showed that including Geochip-based abun-
dances for a number of functional genes improved the model fit and 
reduced parameter uncertainties, particularly under warming. The 
model also demonstrated persistent microbial acclimation to elevated 
temperatures and as a result, lower soil C losses. 

This work raises the question of how to effectively integrate omics- 
based data with ecosystem-scale modeling. That, however, begs the 
question of whether it is practical to do so—or even desirable to try. On 
the practicality side, it is notable that the simplest community data sets 
contain many more “pools” than biogeochemical models, where two 
microbial pools are a lot to handle. Microbial community composition 

data are inherently high resolution, while models are low resolution, 
aiming for broad applicability. Higher resolution brings complexity that 
constrains applicability. Guo et al. (2020) showed that it is possible to 
enhance a sophisticated model’s performance by calibrating it with 
omics information, but they equally demonstrated the complexities of 
doing so. 

Even where we can gene-enable a biogeochemical model, it remains 
dependent on having the genetic data to parameterize the data. Without 
having that key dataset, you would have to predict the community 
composition; that could be done by coupling the biogeochemical model 
to a community assembly model that incorporates mechanisms at a fine 
level of resolution. But doing so would likely create a model that is 
dependent on the specific community assembly and so would be highly 
site specific—a model for exploring microbial ecology rather than 
ecosystem dynamics. On top of that, a model that incorporates microbial 
communities has a parameterization problem: to run the model you have 
to collect those data. As noted by Treseder et al. (2012): “The integration 
of microbial details into ecosystem models often requires parameteri-
zation of new variables that can be difficult to assess … or the invocation 
of mechanisms that are relatively unexamined in situ …” 

And of course, we don’t have a time machine, so our ability to model 
past conditions with a community-enabled model would depend on 
having community data from past times, nor could we compare a model 
to future conditions because it would be impossible to have future 
community data. Most validation of mechanistic microbial models relies 
on either relatively short experimental time series (e.g. Lawrence et al., 
2009; Guo et al., 2020), or analyzing spatial patterns (Wieder et al., 
2014), including space-for-time substitutions, such as relying on tem-
perature gradients to predict the effects of future warming (e.g. Jensen 
et al., 2014; Yang et al., 2022). To project future conditions, a 
community-based mechanistic model would have to predict the values 
of different populations. But if we understand the drivers on community 
composition well enough to model those dynamics, and we understand 
how community composition drives biogeochemistry, then we should be 
able to “model past” the microbes by building kinetic models that link 
directly from environmental drivers to biogeochemical processes. This is 
essentially what a model such as CENTURY does. There are no microbes 
visible in CENTURY, but the model doesn’t assume a sterile world! 
Rather, such models assume that microbial communities are in equi-
librium with their environment, allowing microbial processes and in-
teractions to be embedded within the model’s rate constants 
(Todd-Brown et al., 2011). 

The approach of modeling past the microbes, however, struggles 
when one can’t assume that microbial communities are in equilibrium 
with the environmental drivers—when temporal dynamics are rapid 
enough that community composition might be out of balance with the 
environment. This is likely when either the focal time scale of the model 
is short—trying to capture rapid temporal dynamics (e.g. drying/ 
rewetting, Lawrence et al., 2009; Brangarí et al., 2020), or when the 
longer-term behavior of the overall system is sensitive to such 
high-frequency events and the potential for disconnection between 
respiration and microbial growth that can arise (Brangarí et al., 2020, 
2021). 

One area where community analysis will likely enrich modeling is in 
developing a better picture of biomass and community turnover—in a 
microbial model, turnover of microbial populations is critical in regu-
lating the overall size of the microbial biomass and so of its role in 
decomposition. But is turnover just replacing carbon within existing 
cells or does this represent actual death and regrowth? If the latter, that 
has implications for the production of stabilized necromass that would 
be important to capture (Sokol et al., 2022). Actual cell death and 
regrowth are measurable using genetic techniques (Buckeridge et al., 
2022); a model could parameterize the flow of C into necromass or 
MAOM based on estimates of death rate. 

I suspect that we will continue to see increasingly elaborated, fine- 
scale, microbial models that, in their core, are community dynamics 
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models and incorporate the ecological consequences of community 
shifts, but which have limited power at the larger scales of ecosystems or 
regions and years to decades. For example, Fu et al. (2022) showed that 
different community compositions in litter decomposition (ground 
maize straw) were associated with either positive or negative priming 
behavior. Early r-selected taxa were associated with negative priming, 
while later K-selected “decomposers” were associated with positive 
priming of SOM. Insights from such fine-scale approaches may then be 
used to enrich ecosystem models; for example, as we learn what selects 
for the different decomposer communities, we may be better able to 
predict and model priming behavior. Or in the case of Guo et al. (2020), 
where adding genetic information to the MEND model offered insights 
into temperature adaptation of communities to warming—an insight 
that could be captured in a less omics-explicit model formulations. 

2.5. Carbon use efficiency (CUE): growing the microbes 

A critical parameter in all SOM models is the partitioning of 
metabolized C between loss via respiration and assimilation into new 
organic forms—typically microbial biomass. This is most commonly 
referred to as “carbon use efficiency” (CUE) although other terms are 
sometimes used (e.g. microbial growth efficiency, Wieder et al., 2013; 
Schimel et al., 2022). The importance of efficiency in regulating 
ecosystem behavior is well illustrated by the MEMS (Microbial Effi-
ciency Matrix Stabilization) model (Cotrufo et al., 2013). MEMS posits 
that in the conversion of plant litter into SOM, labile litter may initially 
decompose faster than recalcitrant litter, but because microbes are able 
to assimilate the carbon from labile litter more efficiently, it has a higher 
CUE. This higher CUE leads to the formation of more microbial biomass 
and more necromass, leading to higher ultimate stabilization into 
SOM—fast decomposition but effective stabilization. Recalcitrant litter, 
in contrast, is processed with a low CUE; it decomposes slowly, but ul-
timately produces less SOM. 

Wieder et al. (2013) highlight the importance of Microbial Growth 
Efficiency (which is essentially equivalent to CUE) in a different way—in 
their CLM microbial model, warming reduces MGE, which reduces mi-
crobial biomass and the population of decomposers, which reduces 
decomposition and so allows SOM to accumulate. Without this tem-
perature adjustment of MGE, warming activates soil microbes; globally 
soils lost almost 300 Pg C by the year 2100 whereas if MGE declined with 
temperature, soils gained ~10 Pg. Even in first order models CUE/MGE 
is important in regulating long-term pool sizes, but in a microbial model, 
regulating the size of the microbial biomass gains importance and so 
CUE becomes an even more critical parameter. Allison et al. (2010), in 
their enzyme-based model predicted similar patterns—that if CUE 
decreased with temperature and the kinetic parameters of the enzyme 
pool could acclimate to temperature, SOC could actually increase. And 
CUE does appear to decrease with increasing temperature (Qiao et al., 
2019; Fanin et al., 2022), although not all studies have found this 
decrease (Pold et al., 2019). 

CUE is regulated at two fundamental levels. The first is the inherent 
biochemistry of processing particular substrates, while the second is the 
larger-scale cellular dynamics that ultimately influence C-partitioning 
(Schimel et al., 2022). The first level is tied into substrate chemistry and 
established biochemical pathways. For example, as pyruvate enters the 
TCA cycle, it necessarily loses a C as CO2 in being converted to 
acetyl-coA. This will be true for most specific molecules—there is little 
flexibility in the chemistry of particular reactions. This is largely why 
Cotrufo et al.’s (2013) MEMS model predicts higher ultimate stabiliza-
tion of labile litter—labile components such as protein, cellulose, and 
hemi-cellulose are inherently easier for microbes to assimilate and sta-
bilize than lignin, suberin, or tannin. 

The flexibility is in which reactions a cell “chooses” based on external 
conditions. For example, if a cell has energy reserves available, it might 
carboxylate pyruvate to produce oxaloacetate as a building block for 
biosynthesis rather than decarboxylating it to generate ATP within the 

TCA cycle. Many factors regulate which biochemical pathways a specific 
molecule goes into, because microorganisms are adept at regulating 
their biochemistry to optimize fitness. Hence with any given substrate, 
biochemistry sets an upper limit on CUE, but cellular needs will regulate 
the actual CUE. For example, glucose can have a short-term CUE as high 
as 75% (Sugai and Schimel, 1993) but overall CUE is rarely greater than 
40% (Hagerty et al., 2018; Geyer et al., 2019; Zheng et al., 2019; Hu 
et al., 2022). 

Within a modeling context there are two primary issues that have 
been discussed as important regulators on overall CUE; these are 
maintenance and stoichiometry. Maintenance represents the energy an 
organism must spend simply to maintain cell viability and func-
tion—maintaining membrane integrity and adenylate energy charge, 
repairing cell damage etc. (Joergensen and Wichern, 2018; Hunt et al., 
2022). This is why Wieder et al. (2013) assumed that microbial growth 
efficiency should decline as temperature increased—maintenance 
should have to continue as long as microbes remain viable and 
non-dormant. Chemical reactions increase in rate with temperature, so 
as temperature increases, maintenance rates should increase. Growth 
pathways, on the other hand, don’t change with temperature—the TCA 
cycle remains the TCA cycle. Hence in a growing cell, the resources 
needed to create a daughter cell should remain fixed, even if repro-
duction might occur more rapidly at higher temperature, but mainte-
nance rates should increase independently of growth. Thus, at higher 
temperatures, microbial communities would likely invest more of their 
total energy in maintenance. Since CUE reflects the balance between 
growth and maintenance, it should decline as temperatures increase. 
However, experimental work has shown more complex patterns—some 
studies show the expected decline in CUE with temperature, but not all 
(Zhang et al., 2022). 

Stress, more generally, should decrease CUE, as stress of any sort 
should increase maintenance costs. Temperature is one obvious such 
stress that has been considered in global models (e.g. Wieder et al. 
(2013). Drought and rewetting are also common stressors that should 
increase maintenance costs and so decrease CUE. For example, under 
drought stress, soil microbes synthesize trehalose to protect their 
membranes (Thammahong et al., 2017). In a dry soil trehalose 
comprised almost 50% of the total chloroform-extractable C flush, and 
was rapidly hydrolyzed to glucose upon rewetting (Slessarev and Schi-
mel, 2020); the glucose would then be rapidly metabolized. Most work 
on moisture stress effects on microbes has emphasized such short-term 
respiratory activity, rather than on longer-term energetic efficiencies. 
The short-term response of soil respiration to moisture stress in mineral 
soils appears to be dominated by diffusive substrate supply despite great 
variation in organisms’ moisture sensitivities (Manzoni et al., 2012). In 
contrast, the effect of moisture on CUE has been poorly explored 
(Moyano et al., 2013; Domeignoz-Horta et al., 2020). A particular 
challenge to exploring how moisture influences CUE is that most of the 
available methods add water to apply substrates (labeled organic com-
pounds or 18O water). To avoid this, Heron et al. (2009) applied 13C 
acetate and 15NH3 in the vapor-phase so that they could explicitly 
evaluate the effects of soil moisture on CUE, but they saw no significant 
effect until soil moisture dropped to 0.05 g H2O/g soil, when the C-based 
value of CUE actually increased! They postulated that the water po-
tential had not declined to a level that would constitute a real stress to 
soil microbes. Other stressors (e.g. heavy metals) also impose 
biochemical costs on microbes that appear as increases in respiration 
and decreases in growth (Xu et al., 2018)—i.e. increased maintenance 
and reduced CUE. 

As essentially all soil models drive microbial processes with tem-
perature and moisture, capturing the changes in CUE would seem 
important, especially for microbial models, which drive growth and 
respiration with the size of the biomass pool, and are being used to 
explore long-term SOM dynamics. Thus, the effect of drying and rewet 
cycles on overall CUE is an important area for future global change 
research. Is trehalose accumulation a standard response to drought? 
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When soils are rewet, can that C be recaptured and used to fuel cell 
growth, or does it just fuel the Birch Effect respiration pulse (Schimel, 
2018)? 

Somewhat similarly to physical or chemical stresses, nutrient 
imbalance can reduce CUE (Sinsabaugh et al., 2016; Schimel et al., 
2022). When microbes metabolize substrates that have high C:N or C:P 
ratios, they cannot assimilate all the available C into cell biomass. 
Rather, their CUE becomes constrained by nutrient availability and cells 
may “burn off” excess C in the process of overflow metabolism (Schimel 
and Weintraub, 2003). By assuming that microbial communities are 
ultimately regulated by their ability to process plant detritus, which 
requires exoenzyme processing of both C and N, it is possible to model 
an estimate of overall community CUE after accounting for possible 
overflow metabolism (Sinsabaugh et al., 2016). This model uses the 
ratio of C-assimilating enzymes to N-assimilating enzymes to assess 
whether microbes are C- vs. N-limited and calculates what CUE would 
have to be to enable microbes to produce biomass with the appropriate 
C:N ratio. Thus the Sinsabaugh et al. (2016) model predicts lower CUE 
when processing substrates that have a high C:N ratio. In contrast, the 
CUE on nutrient-rich substrates is driven by the inherent ability to 
process the substrate molecules. This modeling approach gives a 
broad-brush perspective on CUE—more appropriate for cross-study 
comparison than to estimate a “real” partitioning within a specific study. 

Overall, the effects of environmental variation on CUE is an area that 
calls for substantially greater attention. In microbial models, the amount 
of C that becomes cell biomass is a critical variable as it can fuel a 
positive feedback, with increasing biomass accelerating C loss. Yet, 
shifts in CUE are difficult to measure. The “traditional” approach of 
using 13C or 14C labeled tracer molecules to estimate partitioning is 
powerful but limited because it only gives a short-term value for the 
specific compound added (Sugai and Schimel, 1993; Geyer et al., 2019; 
Hagerty et al., 2022). There are, however, methods of estimating mi-
crobial growth that are less sensitive to the specific assimilation 
pathway of a particular organic substrate (Geyer et al., 2019). Notable 
among these is using 18O assimilation into DNA to measure cell growth 
(Blazewicz and Schwartz, 2011) but this method is still sensitive to as-
sumptions about whether the 18O in DNA is from the added 18O-labeled 
water vs. internal metabolic water, as well as fungal/bacterial ratios, 
and other factors that connect cell replication and DNA synthesis to 
overall C use and assimilation (Pold et al., 2020). The calorespirometric 
ratio—the total heat produced by metabolism relative to CO2 release—is 
another pathway-insensitive route to estimating CUE. But, it too is 
sensitive to the assumptions that underly the scaling from heat genera-
tion to actual carbon usage (Geyer et al., 2019). Still, these approaches 
provide important data to facilitate exploring how environmental con-
ditions influence CUE, and while each method has limitations, if applied 
in a comparative approach, any relative shifts in estimated CUE should 
provide information that will be valuable for parameterizing models. 

2.6. Priming: fueling the microbes 

In modeling soil microbial dynamics, one phenomenon that has 
gained attention is “priming”—that is an alteration in the decomposition 
of native SOM as a result of adding fresh organic matter (FOM; Binge-
man et al., 1953; Kuzyakov et al., 2000; Bernard et al., 2022). Usually it 
is assumed that priming accelerates the breakdown of native SOM. 
However, “negative priming,” in which native SOM breakdown is slowed 
by fresh additions can also occur (Bernard et al., 2022). The specific 
mechanisms involved in priming are complex, potentially including 
both abiotic processes, in which fresh compounds may destabilize 
MAOM and make it more accessible to attack, and biological processes, 
in which the fresh materials can fuel production of degradative enzymes 
that might target particulate OM from plant detritus (Bernard et al., 
2022). Priming is thus sensitive to many factors including the nature of 
the added compounds, the available substrates, and the organisms 
present. 

In the context of modeling natural ecosystems, the aspect of priming 
that is probably of greatest interest is root, or rhizosphere, priming, 
where root exudates can fuel microbes that then accelerate their attack 
on native SOM constituents (Kuzyakov, 2002). Rhizosphere priming is 
potentially important in regulating how roots and soil microbes interact 
with each other. Both positive and negative priming mechanisms are 
possible. If microbes gain enough available C from roots, they might not 
attack native SOM (Kuzyakov, 2002), but positive priming seems more 
common, where either microbes gain extra energy to synthesize new 
enzymes or via “nutrient mining” (Bernard et al., 2022). In this process, 
C-rich exudates can lead microbes to become N limited and so they 
invest resources to synthesize enzymes to break down N-containing 
molecules. 

How to incorporate priming into microbial models of SOM turnover 
is, however, unclear—whether to even try is a question. At the largest 
scale, if a model has been calibrated against field data (e.g. CENTURY), 
one might assume that any priming that might have occurred has been 
accounted for in the model’s core parameterization—the model 
wouldn’t match the data if that were not the case. However first-order 
pool-based models have no mechanism for directly including priming 
into their formulations (Huang et al., 2018). For more mechanistic 
modeling, where we care about getting the dynamics right, and not just 
the right overall outcome, capturing substrate interactions could prove 
important. 

Bernard et al. (2022) separate efforts at modeling priming into two 
broad (but overlapping) spatio-temporal scales. They note that “Most of 
the models aim at understanding priming at small scales and over short 
time periods, whereas models aimed at quantifying the importance of 
priming on the SOM balance are developed at larger scales and over 
longer time periods.” One approach to incorporating priming in a model 
is that taken by ORCHIMIC (Huang et al., 2018), which uses a pool 
structure similar to CENTURY (active, slow, and passive soil C), but it 
makes the breakdown of the C pools a function of the size of the active 
pool. 

In some formulations, priming may be implicit within a model—if 
fresh OM stimulates microbial growth, and microbial biomass regulates 
SOM breakdown, then adding FOM in the model will accelerate native 
SOM breakdown. This should be the case with models such as Millenial 
V2 (Abramoff et al., 2022), where the breakdown in POM is a function of 
the size of the microbial biomass. Hence, adding low molecular weight 
carbon (LMWC) will increase biomass and the rate of attack on the POM 
pool, effectively priming the process. However, in this model, there is no 
inherent priming of MAOM as the mobilization of MAOM is dependent 
on desorption, which releases MAOM into the LMWC pool. The most 
sophisticated modeling of priming is probably that in the CORPSE model 
(Sulman et al., 2014), which has a separate rhizosphere compartment in 
which root exudates fuel microbial growth with a high carbon use effi-
ciency, and where microbial biomass in turn drives decomposition. 
Thus, in CORPSE, fresh root-derived carbon inputs directly drive 
accelerated decomposition of native SOM. 

It seems likely that in microbial models, priming will be best 
addressed implicitly—if microbes can grow effectively on labile con-
stituents, and their attack on native SOM is at least partially a function of 
the size of the biomass, then priming becomes an emergent property of 
the system—if plants that produce more fresh roots and root exudates 
invade a site, there will be more labile material to fuel growth and 
attack. Then resource stoichiometry might regulate whether those labile 
inputs satisfy microbial needs and so drive negative priming, or whether 
C-rich inputs fuel nutrient mining and positive priming (Na et al., 2022). 
If such mechanisms are built into a model, then priming would also be 
built in, without requiring approaches such as having the size of the 
labile C pool directly influence the decomposition of the particulate or 
slow SOM pools. 
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3. Conclusions 

“The ultimate test of microbial models is whether they improve 
predictions of global C stocks and fluxes in coupled GCMs.” (Todd--
Brown et al., 2011). That quote is from a paper titled “A framework for 
representing microbial decomposition in coupled climate models” and 
hence it is unsurprising that it emphasizes climate models. Rather it 
could be translated to “The ultimate test of microbial models is whether 
they improve predictions of C-stocks and fluxes at the scale of space and 
time a model was crafted for.” But to know whether a new model im-
proves predictions, it is vital to compare it to conventional, or at least 
different, models (Treseder et al., 2012). Does adding novel formula-
tions, requiring new processes and new parameterizations, give a more 
accurate prediction of how the soil system behaves? It seems clear that 
any major new generation model will be more microbially explicit than 
CENTURY and its ilk, as argued by (Schmidt et al., 2011): “The way 
forward for global land models is to change their organizing principle 
from carbon pools with intrinsic decomposition rates (based on corre-
lations with texture or litter quality, and modified by climate and 
land-use type) to more mechanistic representations of the stabilization 
processes that actually govern carbon dynamics and therefore the 
strength of climate feedbacks.” 

Additionally, in developing next generation models, we need to 
consider efficiency—does the new model offer predictions that are 
enough superior to existing models to justify adding complexity? As 
Brangarí et al. (2020) comment on their model of drying/rewetting: “It 
can be argued that a model of this complexity is likely to fit any data set 
thanks to the large number of parameters, but it could also capture the 
observed patterns for wrong reasons.” Avoiding such equifinality issues 
(Marschmann et al., 2019) with a more complex model calls for testing it 
against an appropriate range of variables; not just output variables such 
as respiration and total microbial biomass but also internal pools and 
fluxes such as soil C pools and microbial growth. It’s important to keep 
in mind that “biogeochemical models always require some process 
simplification, and those simplifications may not represent all relevant 
interactions … the level to which mechanistic detail needs to, or can, be 
included in land models remains unclear.” (Riley et al., 2014). Riley 
et al. (2014) further argue that “Performing more sophisticated sensi-
tivity analyses, parameter inversions, and perhaps developing reduced 
order models should allow a determination of the trade offs between 
increasing model complexity, parameter uncertainty, and model struc-
tural uncertainty.” 

In this paper I’ve identified several areas where new microbial 
models have been struggling over the last decade: notably the mecha-
nisms of microbial action, carbon use efficiency, and priming. It seems 
likely that a new paradigm-forming soil C model would consider each of 
these phenomena carefully. Getting the role of the soil microbial 
biomass as an agent of decomposition “right” will likely be critical as it 
creates a multiplicative effect and thus, a model that is sensitive to pa-
rameters that regulate biomass. It seems likely that next generation 
models will emulate CORPSE or Millenial V2 in making some compo-
nents of the SOM system sensitive to the size of the active microbial 
biomass, while other components may be less sensitive. Some such 
approach to limit the ability of the microbial biomass to drive a runaway 
positive feedback cycle is likely necessary. Reverse Michaelis-Menten 
kinetics can represent this effect phenomenologically but these other 
modeling approaches capture the pattern by capturing likely mecha-
nisms. Particularly important is to recognize that abiotic reactions may 
be critical in regulating microbial access to SOM (Georgiou et al., 2021). 

In parallel with these issues will be concerns over CUE. This is a vital 
parameter in microbial models because it regulates the size of the mi-
crobial biomass under different circumstances and so the size of the 
decomposer pool. The environmental variables that CUE is sensitive to 
will regulate how the entire decomposer system responds to environ-
mental drivers—temperature influences over CUE appear to be partic-
ularly important (Pold et al., 2019). Finally, there is priming—the 

interactions among different substrates that may regulate the overall 
decomposition system; particularly important is exploring how fresh 
root carbon may influence the decomposition of intact, native SOM. 
Priming has been less considered than the previous issues, but may well 
be important to consider, particularly to get long-term SOM dynamics 
correct when vegetation is changing. 

The last decade has seen great expansion in the development of 
microbial models to explain the dynamics of soil organic matter. This 
reflects the growth of a new generation of modelers who recognized that 
first-order models such as CENTURY and Roth-C had reached their 
limits, and that new models need to capture more complex spatial and 
temporal dynamics in soil systems; warming and changing water re-
gimes call for models that can capture the more complex dynamics. It 
also reflects an integration between microbial ecology and whole-system 
biogeochemistry, although how much microbial ecology will be appro-
priate to include in whole-system biogeochemical models remains an 
open question. I hypothesize that we will develop alternate families of 
models—coarser models that have only a few microbial pools will 
dominate for large-scale application and for integrating into global 
biogeochemical models (e.g. MIMICS, Millennial, CORPSE), while 
models that elaborate the microbiology more extensively, such as 
DEMENT (Allison, 2012) or BAMS1 (Riley et al., 2014) will find appli-
cation at the finer scales and for more targeted and short-term analyses. 
For each scale of model, we will develop a separate intellectual “Tri-
angle” (Blankinship et al., 2018) that locks together the theory and 
measurements with the actual model. Having recognized that future 
biogeochemical models will be microbial, it becomes clear that the 
factors that regulate CUE and thus, the size of the microbial biomass, are 
critical in regulating the overall activity of microbial communities. More 
important than the speed of microbial action will be the fate of the 
products—are they respired or reprocessed into new microbial biomass. 
Finally, the mechanisms that regulate microbial access to substrates 
becomes vital. To what extent is access regulated by abiotic sorption/-
desorption reactions on clay minerals or entrapment within soil aggre-
gates? An important aspect of this is priming—do microbes have the 
energy they need to metabolize native SOM? Can they be fueled by fresh 
plant inputs? Or alternatively do fresh inputs repress attack on native 
SOM? Priming, thus, remains an active area of research, and one that has 
been poorly addressed by prior modeling efforts. New models are 
addressing various aspects of each of these phenomena, although un-
surprisingly, there remains a lot of speculation about how best to cap-
ture the phenomena in ways that will have broad applicability. 
Developing new microbial models will thus be essential to integrating 
microbial ecology and biogeochemistry and to predicting how ecosys-
tems will respond to ongoing environmental change. 
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